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Abstract

Boundary integral equation methods for computing two- and three-dimensional nonlinear free surface flows are presented.
In two dimensions, integral formulations can be derived by using complex variables or Green'’s functions. Both formulations
are shown to yield the same level of accuracy. The formulation based on Green’s functions is extended to three dimensions by
following Forbes [J. Comput. Phys. 82 (1989) 330-347] and accurate numerical results are presented for moving distributions
of pressure and moving submerged disturbances.

O 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Over the last 150 years, important progress has been achieved in the calculation of two-dimensional free surface waves.
This success is largely based on the fact that two-dimensional potential flows can be formulated in terms of complex variables
and analytic functions. Therefore conformal mappings can be used to map the flow domain (with a free surface) into another
convenient domain (without a free surface). Furthermore, Cauchy integral formula can then be used to reformulate the problem
as a system of singular nonlinear integro-differential for the unknown shape of the free surface. This equation cannot usually be
solved analytically. It is also often difficult to solve this equation numerically, too, but this formulation at least has the advantage
that it involves a one-dimensional system (in contrast with the original problem which is two-dimensional). This means that
very accurate solutions can be obtained with relatively few mesh points.

Boundary integral equation methods for two dimensions can also be derived by using Green'’s functions. This approach has
the advantage that it can be extended for three dimensions.

In this paper we first consider the two-dimensional problem of moving pressure and solve it by using boundary integral
equations methods based on complex variables and on Green'’s functions. We then consider the extension of the Green’s function
approach to three-dimensional problems and present numerical results. The three-dimensional scheme is similar to Forbes [1],
except that we do not use splines. Other methods for three-dimensional steady problems can be found in Scullen and Tuck
[2] and Tuck et al. [3]. There are also papers where three-dimensional unsteady free surface flows are studied. For example,
Cao et al. [4] and Scorpio et al. [5] use a desingularized method and Grilli et al. [6] and Xue et al. [7] use higher-order three-
dimensional boundary element methods. These algorithms are based on a mixed Euler—Lagrange approach to solve the time
dependent boundary integral equation formulation. The method was originally developed for two-dimensional unsteady waves
by Longuet-Higgins and Cokelet [8]. A Rankine panel method to study the steady and unsteady potential flows can be found in
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Nakos and Sclavaunos [9]. A recent extensive review of the computations of nonlinear free surface flows is given by Tsai and
Yue [10].

The two-dimensional problem for a moving distribution of pressure is considered in Section 2, the two-dimensional problem
of a piercing object is then considered in Section 3. The numerical results for the three-dimensional problems are presented in
Section 4.

2. Two-dimensional pressuredistribution
2.1. Formulation
We consider the two-dimensional free surface flow generated by a distribution of pressure moving at a constantafocity
the surface of a fluid of infinite depth. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. We

choose a Cartesian frame of reference moving with the distribution of pressure and assume that the flow is steady. We introduce
the potential functior® (x, y) so that the velocity is given b§@,, @y). In the flow domaing satisfies

V20 =0, xeR,y<n(), @
with the condition
(P, @y) > (U,0), y—> —o0. (2
We denote by = n(x) the equation of the free surface. The kinematic and dynamic boundary conditions give
Pynx =Dy, y=n(x), (3
and
1 )4 U?

— = . 4

3 5 Y= (4)
Here g is the acceleration of gravity is the fluid density ang the prescribed distribution of pressure. The choice of the
Bernoulli constant on the right-hand side of (4) fixes the origin.ofhe upstream radiation condition gives

(Px, Py) — (U,0), n—0, asx— —oo. (5)

—(cbf+d>§)+gn+;=

The physical quantities are made dimensionless by usings the unit velocity and the length of the support of the
distribution of pressure as the unit length. The Froude number is defined by

U
F=——. 6
N ©

We now describe the two integro-differential equation reformulations mentioned in the Introduction.

The first reformulation relies on complex variables and uses Cauchy integral formula (see, for example, Asavanant
and Vanden-Broeck [11] and Vanden-Broeck and Dias [12]). We introduce in addition to the potential fubctibwe
streamfunction&. We choose? = 0 on the free surface. We seek the complex funciibr- iy’ as an analytic function of
@ +iw in the lower half plan&r < 0. Here primes denote derivatives with respectd@he method used here is an inverse type
method, in which the spatial variables are obtained as functions of the velocity potential and of the streamfunction. Applying
Cauchy integral formula t8’ + iy’ — 1 on a contour consisting of the free surface and a half circle of arbitrary large radius in
¥ < 0 we obtain

1 [ @®-1+y©)
X4y —1=—— D dt. @)
2im E—(@4+1¥)  |y—o

—00

Sincex’ +iy’ — 1 tends to 0 agr — —oo, there is no contribution from the half circle. Taking the lingit— 0 in (7) and
then the real part we obtain

R
X —1= ﬂ/é_qﬁdg. ®)

Next we rewrite (4) as

~—+¢eP=0 ©)
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wheree P is the (prescribed) dimensionless pressure. The integral in (8) is a Cauchy principal value. Substituting (8) into (9)
yields a nonlinear integro-differential equation fdr This equation is solved numerically in the next section.
The second reformulation does not rely on complex variables and involves Green'’s second identity

/(aAﬁ—ﬂAa)dV:/(a%—ﬁa—a>ds. (20)
on on
\%4 C

Here C is a closed curve bounding a region of the plane. The curve is characterised by its arclengthand its
outward normah. Assuming thatx satisfies Laplace equation and thfats the two-dimensional free space Green function
g = z=In[(x —x*)2+ (y — y*)?2], (10) gives

a(x*,y*):r/(aa—g —ga—a> ds. (11)
C

Herer = 1 when(x*, y*) is insideC andr = 1/2 when(x*, y*) is onC. We now choose = & — x and assume that consists
of the free surface and a half circle of arbitrary large radius in the regiam(x). Using the arclength and describing the
free surface parametrically by= X (s) andy = Y (s) we obtain

o0
1'.7:(s*)= / [f(s)E(s,s*)—G(s,s*) ds. 12)
2 on

—00

aF(s)
on

Hereg(s) = @ (X (s), Y(5)), F(s) = ¢(s) — X(5), G(s,5%) = £ IN[(X(s) — X (%)% + (Y (s) — Y (s*))2] andn = (=Y’ (s),

=3

X'(s)). The definition of the arclength requires that "

X2 4y2—1 (13)
Many authors have used the arclength parametrization in the recent years (see, for example, Forbes [13] and Vanden-Broeck
[14)).

The kinematic and dynamic boundary conditions on the free surface are rewritten as

]

% o, (14)

on
and

1, Y 1

§¢S+ﬁ+8p=§, (15)

wheree P is the dimensionless pressure. In this paper we choose

1
P(s) = es?=1, for|s| <1, (16)
0, otherwise.

The unknown functiong (s), X (s) and Y (s) are obtained by solving the nonlinear equations (12)-(15), subject to the
radiation condition.

2.2. Numerical scheme

The integro-differential equations (8) and (9) were solved numerically by following the procedure outlined in Asavanant and
Vanden-Broeck [11]. The reader is referred to that paper for details.

We shall describe the numerical procedure used to solve (12)—(15). We dleégaally-spaced pointg = —e(N — 1)/2,
si=s1+e(i—1),i=2,..., N, wheree is the interval of discretization. We chosgto be odd. Here, approximates-oo and
sN = —s1 approximatestoo. We use the notatior; = X (s;), y; = Y (s;), etc. The domain of integration for (12) is;( sy).

In order to satisfy the Bernoulli equation at the first point, we impose

y1=0, xp=¢1=1, X1 =¢1="11. (17)

Egs. (13)—(15) and the trapezoidal rule yields
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1
ne=y1=yd x=xe1t se +x_g),

1
k=14 5e (% +5p1):

’ Ls 4
b = /l—%j bk = br—1+ §€(¢k +¢_1) (18)

fork=2,...,N.

The values of the functions at the midpoints are calculated by interpolation with two or four pginis{ = %(Xk—l +x1),
etc.). Eq. (12) is evaluated at midpoinis 1/, i =2,..., N — 1. The integral is approximated by the trapezoidal rule with a
summation over the mesh points i =2, ..., N. Substituting (18) yieldsV — 2 nonlinear algebraic equations. The last two
equations are obtained by imposing the radiation condition by the relations

yp=0 and —3yj+4y,—y;=0. (19)

The second of these relations imposes approxim@t%l};t 0. This system ofV nonlinear equations for th& unknowns
y/l, . y;\, is solved by Newton’s method. A similar numerical scheme, but used for another problem can be found in Forbes
[13].

The initial guess for the unknowrpsl’ is zero whene « 1 or previous computed solutions obtained for slightly different
values of F ande whene is large.

2.3. Results

The numerical accuracy of the scheme described in the previous section for solving (12)—(15) was checked byvarying
ande (see Fig. 1). We found that the solutions presented here are independéandg within graphical accuracy fav > 200
ande < 0.1. In the numerical calculations, the integral fremo to co in (12) is replaced by an integral from to sy . We
found that these upstream and downstream truncations only affects the first and last half wavelength of the free surface profiles.
A similar numerical behavior was found in Asavanant and Vanden-Broeck [11].

We compared our numerical solutions with those obtained by using the method of Asavanant and Vanden-Broeck [11] (i.e.,
by solving (8) and (9)). A typical comparison is shown in Fig. 1. Similar results were found for other valueanaf F.
The conclusion of the comparison is that numerical results as accurate as those of Asavanant and Vanden-Broeck [11] can be
obtained without using complex variables. This suggests that accurate results for three-dimensional free surface flows can be
obtained by generalising the Green formulation of Section 2 to three dimensions. This is done in Section 4.

3. Two-dimensional surface piercing object

Once a solution of (12)—(15) or of (8), (9) has been computed for a given pressure distribution (16), we can replace the free
surface under the supportl < s < 1 of the pressure distribution by a rigid surface. Therefore the schemes described in the
previous sections provide an inverse method to calculate free surface flows past surface piercing objects or two-dimensional
“ships.” The shape of the ship is given at the end of the calculations by the shape of the streamline under the support of the
pressure distribution. One drawback of this approach is that the shape of the ship depgnttsotherefore desirable to have
approaches which enable a direct calculation of the free surface flow past a given surface piercing object. This was achieved by
Asavanant and Vanden-Broeck [11] using complex variables. In this section we explore the corresponding approach using the
Green function formulation.

3.1. Formulation and numerical procedure

We shall present results for a parabolic object defined by the equation

y=3502-1). (20)

In general we might expect a spray or splash at the front of the object (see, for example, Dias and Vanden-Broeck [15]). Here, we
restrict our attention to flows which separate smoothly from the object. The calculation of flows past bodies in finite or infinite

depth has received much interest in recent years. Madurasinghe and Tuck [19], Tuck and Vanden-Broeck [20] and Farrow
and Tuck [17] have computed flows past bodies of arbitrary shape which have either a smooth separation from the body, or a

stagnation point on the body in water of infinite depth. Hocking [16] has computed bow flows with smooth separation in water
of finite depth. McCue and Forbes [18] have presented computations of bow and stern flows with constant vorticity in finite
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Fig. 1. (Top) Computed free surface profiles obtained with the same paranieter.7, ¢ = 0.001 but with different gridsN = 721,
e =0.025 (-) andN = 361, ¢ = 0.05 (-). (Bottom) Computed free surface profiles obtained with this algorithm (-) and with an algorithm
based on complex potential formulation (:). The parameterg’as).7, ¢ = 0.001 and the grid usedv = 721,¢ = 0.025.

depth. In all these papers flows past a two-dimensional semi-infinite body having only one point of separation are computed,
whereas in our paper and in Asavanant and Vanden-Broeck [11] flows past finite bodies which have two points of separation
(one in front and one at the rear of the body) are considered.
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Let us denote by, ands; the values of at the left and right separation points. Since we need tosfirghds; as part of
the solution, we introduce the new variablby

s =8q + (5p — Sg)t. (21)

The relation (21) maps the unknown inten@l,, sp) into the fixed interval(0, 1). The new unknown functions are
(1) :=¢(s), X(t) = X (s), Y (t) = Y (s), wheres is defined by (21).

The system of nonlinear equations to be solved is now obtained by substituting (21) into (12), (13), (15). This yields the
integro-differential equation

) (X(1) —N)?(t*»N(—?’(t)) + N(’fm - Y ()X (1)
(X() = X(t*)2+ (Y (1) — Y (1%))?

27(p(t*) — X (1)) = /[2(&0)—%(;)

—In[(X () — )?(t*))2 + (Y1) - ?(t*))z]?’(t)] df, —oo <t* < oo, (22)
the Bernoulli equation,
- 2 =
%(Shdj&) +%=%, fort <Oort>1 (23)
and the arclength equation
X'2+72=(sp — sa)> (24)

In addition the kinematic condition boundary condition on the object gives
Y:%()Nfz—l), for0<r<1. (25)

At the separations points= 0 andr = 1 we must satisfy both (23) and (25), so we have

1/ & \2 eX%2-1 1

= =2, fortr=00rr=1. 26

2 ( Sh— Sa ) + 2F2 2 (26)
For the numerical computation we introduce againequally- spaced pomtsl =—e(N-1/2, 1 =11 + el - 1),

i=2,..., N and use the notatiary = X(;), y; = Y (t;), ¢; = ¢(1;), x; =X'(1;), yi = Y'(t;) andg; = ¢ (1;).

The values ofp; at the surface of the object cannot be determlned as in (18), by using Bernoulli equation. At the surface
of the object, between= 0 andt = 1 there areM = 1/e¢ — 1 mesh points ( we choogesuch that le is integer, but this is
not a necessary condition). At each of them then are two unkngfvaady’. So we haveV + M + 2 unknownsyy, ..., yy,
¢EN+1)/2+1’ .. .,¢EN+1)/2+M andsg, sp.

The integral equation is evaluated at midpoifts », i = 2,..., N — 1 as before, so we obtaid — 2 equations. Another
M equations are given by

&, 9 .
Y+ 24 = 5 (K2 Y T=1 M @7

The equations at the separation points (26) gives us another two equations and the radiation condition (19) gives us the last
. "’/ . . Y/ / .
twg equations. It should be notegl that t_he valueg'oét the sepqratlon ponntsb((l\url)/2 and¢(N+l)/2+M+l) are obtained
using an extrapolation formula with 4 points (taken from the object).
The usual initial guess |§l’ =0,i=1,...,N,sa=—1,5p =1'¢EN+1)/2+j =sp—sa,j=1,....M
At the first point we impose

y1 =0, x/l = ¢Z/L =Sp — Sa, X1 =¢1==5q+ (5p — Sa)t1, (28)

and the remaining functions are calculated as before, using Egs. (23)—(24) and the trapezoidal rule. The values of functions at
midpoints are calculated again by interpolation with two points.

The numerical scheme described above was used to calculate solutions for various v&lwesdef The accuracy of the
results was checked by varying ande. We present typical free surfaces for- 0 and fore < 0 in Fig. 2. It can be observed
that if we keepF constant and we vary the value afthe wavelength of the waves downstream does not change much, only
the amplitude is affected.

Our calculations cannot be directly compared with those of Asavanant and Vanden-Broeck [11] because their study is for
finite depth. Also they choose the position of the separation points and obtain the position of the vertex of the obstacle as part of
the solution. In our case the position of the vertex of the object is known and we calculate the position of the separation points
as part of the solution.
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Fig. 2. (Top) Computed free surface profiles obtained wfith- 1.5, ¢ = 0.004, N = 421, ¢ = 0.1. The parabolic object:) and separation

points (x) are also showed. (Bottom) Computed free surface profiles obtained in the eaBeThe values of the parameters dre= 1.5,
e = —0.006(:); ¢ = —0.004— —); ¢ = —0.001(—).

4, Three-dimensional free surface flows

The results of the previous section shows that two-dimensional free surface flows can be computed accurately by using the
Green formulation. In this section we extend the approach for three-dimensional flows. We present explicit results for pressure
distributions and submerged objects.
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4.1. Formulation

We consider a three-dimensional distribution of pressure moving to the left at a constant &latitlye surface of a fluid
of infinite depth. The sketch of the flow is given in Fig. 3. As in Section 2, we choose a frame of reference moving with the
pressure distribution and assume that the flow is steady. At infinite depth there is then a uniform stream with constant velocity
U to the right. We introduce Cartesian coordinates, z with the z-axis directed vertically upwards and theaxis parallel to
the velocityU. We denote by = ¢ (x, y) the equation of the free surface. The potential functiam, y, z) satisfies Laplace
equation

V2¢ =0, x,yeR,z<i(x,y), @)

in the flow domain.

The kinematic boundary condition (3), the dynamic boundary condition (4) and the radiation condition (5) can now be
rewritten as

Pl + Pyly =Pz, z=C(x,), (30)
1 U?

5@3+¢§+¢9+g?+%=7;,z=i@dh (31)
nowaves as — —oo. (32)

Eg. (10) holds in three dimensions whérerepresents a volume bounded with the surf@cé>roceeding as in Section 2
and using the three-dimensional free surface Green function

1 1
G=— 33
AT ((x = x4 (y = Y2+ = M)HY? 3
we obtain
1 * * * // 1 f(x,)’)_f()f*,y*)_(x_)f*)fx—(y_y*)fy
= V) = Ux*®) = y) = Ux)— dx d
207D ) R2 (000 =00 (=224 () =y 2+ (L y) — L,y D32
Ul (34)

+ / / 1 drd
A (=2 =y () = 6 R Y

whereg (x, y) = @(x, y, £ (x, y)).
We choose the pressure as
L? n L?
plx,y) = P19 T 0*-L%) x| < Land|y| <L,
0, otherwise

Fig. 3. Sketch of the flow in the three-dimensional case. The pressure is moving to the left at a constanttvelocity
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We introduce dimensionless variables by ugihgs the unit velocity and as the unit length. Combining Egs. (31) and (32)
and using the chain rule of calculus we obtain

1A+eDe7+ A+ D97~ 2xlydudy ¢ 1

+ = +eP=_ (35)
2 1+¢2+¢2 F? 2

whereF = U/(gL)Y/2 ands = Py/(pU2). Now P (x, y) is € 6*~D+1/*~D) for |x| < 1 and|y| < 1, and O otherwise.
Eq. (34) is now rewritten as

2n(p(x*, ¥y ) —x*) =11+ I (36)
where
oo 0
11=f f(¢<x,y>—¢<x*,y*>—x+x*)1<1dxdy, (37)
0 —
oo 0
= f / (4 (e ) K2 dr dy, (38)
0 —
Ky= [ 00 y) =™, y*) — (x = xM)ox — (v = ¥)gy
L (= x9)2 4 (3 — y9)2 4+ (S (x, y) — £ (x*, y%))2)3/2
S, y) = ) — (x =2 — ( + ¥y }
((x =x)2+ (y+ yH2+ (¢ (x, ) — S(x*, y*)2)32 |
i 1
Ky =
LV(x = x%)2 4+ (y — y9)2+ (£ (x, y) — ¢ (x*, y*))2
1 ]
+ . (39)
V& —x9)Z+ (y+y9)2+ (C(x, y) — £ (x*, y%))2

In deriving (36) we used the fact that the solutions are symmetricdirection. We note that the integr& is singular
wheread is not.

4.2. The numerical scheme
We truncate the intervalsoco < x < oo and O< y < oo tox1 < x < xy, andyq < y < yyr and introduce the mesh points

xi=x1+(@—-Ddx,i=1...,Nandy; =(j —1dy, j=1,..., M. Following Forbes [1] the integrdb, is written in the
formlp=15+1;:

XN YM XN

/(Cx(x,y)Kz—Cx(X*,y*)Sz)dxdy, Ié/=§x(X*,y*)//Szdxdy

X1 y1 X1
where

1 1
So = +
VAG =324+ B(x —x*)(y —y) +C(y —y9)2 VAR —x*)2 = B(x —x*)(y + y*) + C(y + y*)2

where

A=1+220%y5,  B=20G% ye, (N %), C=1+422(5 ).

The integrallé’ (which contains the singularity) can be calculated using

ds dr t
— = —In(24s+ Bt +2,/A(As2+ Bst + Ct2
//\/As2+Bst+Ct2 VA ( \/ ( )>
S 2 2
+ﬁ|n<2Ct+Bs+2\/C(As + Bst +Cr2) ).

The 2V M unknowns are

T
u= (Cxll’ §x12’ s CJCNYM,]_» CJCNM s ¢x11, cees ¢JCNM) .
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The integrals and the Bernoulli equation are evaluated at the points,2, y;), i =1,...,N -1, j=1,..., M, so we
have 2N — 1) M equations. Another® equations are obtained from the radiation condiziplr} =0,¢x; =1,j=1.... M.
The values of and¢ are obtained by integrating and¢, with respect tor by the trapezoidal rule. The integration is started
by using the values derived from the radiation condition (32) and the free surface condition (35) satisfied at the first row

é‘lj:O, f)’1j=0’ ¢1j=x1, ¢ylj=0, j=1....M.
The values ok, and¢y are then calculated by central differences. The values of the variatded ¢ at (x;11/2, y;) were

obtained by interpolation.
The 2um nonlinear equations are solved by Newton's method. In most calculations we chgose0, ¢y; = 1 for

i=1...,N,j=1,..., M as theinitial guess.

4.3. Results

We used the scheme of the Section 4.2 to calculate solutions for different values of the Froude Auentzkiof the
parametee. We found that the results are qualitatively similar. We present a typical free surface profileféx7 ande = 1
(see Fig. 4). The wake and the two different family of waves (transverse waves and short-length divergent waves) can be easily
observed. WherF increases the amplitude of the divergent waves becomes more important than that of the transverse waves
(see Fig. 5). The wavelength of the transverse waves increases with the Froude number (see Fig. 6). Nonlinear solutions can be
calculated close to the maximum height of waves allowed by Bernoulli equation.

The influence of the truncation upstream and downstream is seen to be negligible (see Fig. 7). Here we show the centerline
(i.e., the intersection of the free surface with the plare 0). Two curves corresponding to different truncatians (—3, 12)
andx = (-6, 6) are shown.

The accuracy of the solutions have been tested by varying the number of grid points and the intearalsdd between
grid points (see an example in Fig. 8). The upper part of the figute is calculated withV =61, M =17, dc =dy = 0.3
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Fig. 4. The solution for the wave field due to a moving pressure advancifig=a0.7 ands = 1. The grid usedN =75, M = 25, dt = 0.2,
dy = 0.2. The transverse waves are perpendicular to the direction of the velogitg., thex-axis). The divergent waves have crests roughly
parallel to the direction of velocity, moving outward. In this graph and in the following three-dimensional figures the darker parts correspond

to the troughs and the brighter parts to the peaks of the waves.
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0.6. The divergent waves can

=61,M =19, dv =dy =

Fig. 5. The waves generated for a higher Froude numbet (.2). The grid usedV

be observed more easily and their amplitudes are more important than those of the transverse waves.
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Fig. 6. The wake in the casds
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Fig. 7. The free surface elevation at the plane 0 for two different truncations. Two curves corresponding to different truncatieas—3, 12)
(the dashed line) and= (-6, 6) (the solid line) are shown. In both casBs=0.7, & = 1.
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Fig. 8. The accuracy checl = 0.7, s =1 x 10°4, N =89, M = 13, dv = dy = 0.2 (lower half), N = 61, M = 17, dt = dy = 0.3 (upper
half).

and the lower pary < 0 is calculated withv =89, M = 13, dv =dy = 0.2. The values of the parameters are the same in both
cases [ =0.7,e=1).

The algorithm can be easily modified to include two or more pressure distributions and to study the interaction of the wakes
produced by each of them. We present an example in Fig. 9 for two pressure disturbances moving parallely. The V-shape of the
waves downstream becomes in that case a W-shape. This case can be viewed as the wave interactions between ships moving
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Fig. 10. The waves generated by a pair source-sik=(0.7). The source is iri0, 0, —1) and the sink in(1, 0, —1).

parallely in deep water. A numerical study of wave interaction of two moving pressure disturbances in shallow water was done
in Jiankang et al. [21], using a wave equation model.
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There are various possible generalisations of our code. One of them is to calculate solutions in finite depth. In ¢hat case
should be replaced by

1 1 1 1
= — + —
A ((x—x)24+ (y = )2+ (= DY2 A (x =292+ (y = y)2 + @+ 2F + 20)H)1/2
wheref is the depth of the fluid.

Another is to consider submerged objects. An inverse method to compute them is by superposing singularities. An example
of the waves generated by a source and a sink is given in Fig. 10.

5. Conclusion

We have calculated two-dimensional and three-dimensional free surface flows generated by moving pressures. This models
in an inverse way free surface flows past ships. For two dimensions we have presented a direct method using a parabolic
object. The corresponding problem in three dimensions is left for future work. Generalisation for two pressure distributions and
submerged disturbances were also presented.
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