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Abstract

Boundary integral equation methods for computing two- and three-dimensional nonlinear free surface flows are presented.
In two dimensions, integral formulations can be derived by using complex variables or Green’s functions. Both formulations
are shown to yield the same level of accuracy. The formulation based on Green’s functions is extended to three dimensions by
following Forbes [J. Comput. Phys. 82 (1989) 330–347] and accurate numerical results are presented for moving distributions
of pressure and moving submerged disturbances.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Over the last 150 years, important progress has been achieved in the calculation of two-dimensional free surface waves.
This success is largely based on the fact that two-dimensional potential flows can be formulated in terms of complex variables
and analytic functions. Therefore conformal mappings can be used to map the flow domain (with a free surface) into another
convenient domain (without a free surface). Furthermore, Cauchy integral formula can then be used to reformulate the problem
as a system of singular nonlinear integro-differential for the unknown shape of the free surface. This equation cannot usually be
solved analytically. It is also often difficult to solve this equation numerically, too, but this formulation at least has the advantage
that it involves a one-dimensional system (in contrast with the original problem which is two-dimensional). This means that
very accurate solutions can be obtained with relatively few mesh points.

Boundary integral equation methods for two dimensions can also be derived by using Green’s functions. This approach has
the advantage that it can be extended for three dimensions.

In this paper we first consider the two-dimensional problem of moving pressure and solve it by using boundary integral
equations methods based on complex variables and on Green’s functions. We then consider the extension of the Green’s function
approach to three-dimensional problems and present numerical results. The three-dimensional scheme is similar to Forbes [1],
except that we do not use splines. Other methods for three-dimensional steady problems can be found in Scullen and Tuck
[2] and Tuck et al. [3]. There are also papers where three-dimensional unsteady free surface flows are studied. For example,
Cao et al. [4] and Scorpio et al. [5] use a desingularized method and Grilli et al. [6] and Xue et al. [7] use higher-order three-
dimensional boundary element methods. These algorithms are based on a mixed Euler–Lagrange approach to solve the time
dependent boundary integral equation formulation. The method was originally developed for two-dimensional unsteady waves
by Longuet-Higgins and Cokelet [8]. A Rankine panel method to study the steady and unsteady potential flows can be found in
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Nakos and Sclavaunos [9]. A recent extensive review of the computations of nonlinear free surface flows is given by Tsai and
Yue [10].

The two-dimensional problem for a moving distribution of pressure is considered in Section 2, the two-dimensional problem
of a piercing object is then considered in Section 3. The numerical results for the three-dimensional problems are presented in
Section 4.

2. Two-dimensional pressure distribution

2.1. Formulation

We consider the two-dimensional free surface flow generated by a distribution of pressure moving at a constant velocityU at
the surface of a fluid of infinite depth. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. We
choose a Cartesian frame of reference moving with the distribution of pressure and assume that the flow is steady. We introduce
the potential functionΦ(x,y) so that the velocity is given by(Φx,Φy). In the flow domain,Φ satisfies

∇2Φ = 0, x ∈ R, y < η(x), (1)

with the condition

(Φx,Φy)→ (U,0), y → −∞. (2)

We denote byy = η(x) the equation of the free surface. The kinematic and dynamic boundary conditions give

Φxηx =Φy, y = η(x), (3)

and

1

2

(
Φ2
x +Φ2

y

) + gη+ p

ρ
= U2

2
, y = η(x). (4)

Hereg is the acceleration of gravity,ρ is the fluid density andp the prescribed distribution of pressure. The choice of the
Bernoulli constant on the right-hand side of (4) fixes the origin ofy. The upstream radiation condition gives

(Φx,Φy)→ (U,0), η→ 0, asx→ −∞. (5)

The physical quantities are made dimensionless by usingU as the unit velocity and the lengthL of the support of the
distribution of pressure as the unit length. The Froude number is defined by

F = U√
gL
. (6)

We now describe the two integro-differential equation reformulations mentioned in the Introduction.
The first reformulation relies on complex variables and uses Cauchy integral formula (see, for example, Asavanant

and Vanden-Broeck [11] and Vanden-Broeck and Dias [12]). We introduce in addition to the potential functionΦ, the
streamfunctionΨ . We chooseΨ = 0 on the free surface. We seek the complex functionx′ + iy′ as an analytic function of
Φ+ iΨ in the lower half planeΨ < 0. Here primes denote derivatives with respect toΦ. The method used here is an inverse type
method, in which the spatial variables are obtained as functions of the velocity potential and of the streamfunction. Applying
Cauchy integral formula tox′ + iy′ − 1 on a contour consisting of the free surface and a half circle of arbitrary large radius in
Ψ < 0 we obtain

x′ + iy′ − 1 = − 1

2iπ

∞∫
−∞

(x′(ξ)− 1+ iy′(ξ))
ξ − (Φ + iΨ )

∣∣∣∣
Ψ=0

dξ. (7)

Sincex′ + iy′ − 1 tends to 0 asψ → −∞, there is no contribution from the half circle. Taking the limitψ → 0 in (7) and
then the real part we obtain

x′ − 1 = − 1

π

∞∫
−∞

yξ

ξ −Φ dξ. (8)

Next we rewrite (4) as

1

2

1

x′2 + y′2 + y

F2
+ εP = 0 (9)
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whereεP is the (prescribed) dimensionless pressure. The integral in (8) is a Cauchy principal value. Substituting (8) into (9)
yields a nonlinear integro-differential equation fory′. This equation is solved numerically in the next section.

The second reformulation does not rely on complex variables and involves Green’s second identity∫
V

(α�β − β�α)dV =
∫
C

(
α
∂β

∂n
− β ∂α

∂n

)
ds. (10)

Here C is a closed curve bounding a regionV of the plane. The curveC is characterised by its arclengths and its
outward normaln. Assuming thatα satisfies Laplace equation and thatβ is the two-dimensional free space Green function
g = 1

4π ln[(x − x∗)2 + (y − y∗)2], (10) gives

α(x∗, y∗)= r
∫
C

(
α
∂g

∂n
− g ∂α

∂n

)
ds. (11)

Herer = 1 when(x∗, y∗) is insideC andr = 1/2 when(x∗, y∗) is onC. We now chooseα =Φ−x and assume thatC consists
of the free surface and a half circle of arbitrary large radius in the regiony < η(x). Using the arclengths and describing the
free surface parametrically byx =X(s) andy = Y(s) we obtain

1

2
F(s∗)=

∞∫
−∞

[
F(s) ∂G

∂n
(s, s∗)−G(s, s∗) ∂F(s)

∂n

]
ds. (12)

Hereφ(s)= Φ(X(s),Y (s)), F(s) = φ(s)−X(s), G(s, s∗)= 1
4π ln[(X(s)−X(s∗))2 + (Y (s)− Y(s∗))2] andn = (−Y ′(s),

X′(s)). The definition of the arclength requires that

X′2 + Y ′2 = 1. (13)

Many authors have used the arclength parametrization in the recent years (see, for example, Forbes [13] and Vanden-Broeck
[14]).

The kinematic and dynamic boundary conditions on the free surface are rewritten as

∂φ

∂n
= 0, (14)

and

1

2
φ2
s + Y

F2
+ εP = 1

2
, (15)

whereεP is the dimensionless pressure. In this paper we choose

P(s)=
{

e
1

s2−1 , for |s|< 1,
0, otherwise.

(16)

The unknown functionsφ(s), X(s) and Y(s) are obtained by solving the nonlinear equations (12)–(15), subject to the
radiation condition.

2.2. Numerical scheme

The integro-differential equations (8) and (9) were solved numerically by following the procedure outlined in Asavanant and
Vanden-Broeck [11]. The reader is referred to that paper for details.

We shall describe the numerical procedure used to solve (12)–(15). We defineN equally-spaced pointss1 = −e(N − 1)/2,
si = s1 + e(i−1), i = 2, . . . ,N , wheree is the interval of discretization. We choseN to be odd. Heres1 approximates−∞ and
sN = −s1 approximates+∞. We use the notationxi =X(si ), yi = Y(si), etc. The domain of integration for (12) is (s1, sN ).

In order to satisfy the Bernoulli equation at the first point, we impose

y1 = 0, x′
1 = φ′

1 = 1, x1 = φ1 = s1. (17)

Eqs. (13)–(15) and the trapezoidal rule yields
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x′
k =

√
1− y′2

k , xk = xk−1 + 1

2
e
(
x′
k + x′

k−1
)
,

yk = yk−1 + 1

2
e
(
y′
k + y′

k−1
)
,

φ′
k =

√
1− 2

yk

F2
− 2pk, φk = φk−1 + 1

2
e
(
φ′
k + φ′

k−1
)

(18)

for k = 2, . . . ,N .
The values of the functions at the midpoints are calculated by interpolation with two or four points (xk−1/2 = 1

2(xk−1 +xk),
etc.). Eq. (12) is evaluated at midpointssi−1/2, i = 2, . . . ,N − 1. The integral is approximated by the trapezoidal rule with a
summation over the mesh pointssi , i = 2, . . . ,N . Substituting (18) yieldsN − 2 nonlinear algebraic equations. The last two
equations are obtained by imposing the radiation condition by the relations

y′
1 = 0 and −3y′

1 + 4y′
2 − y′

3 = 0. (19)

The second of these relations imposes approximatelyy′′
1 = 0. This system ofN nonlinear equations for theN unknowns

y′
1, . . . , y

′
N

is solved by Newton’s method. A similar numerical scheme, but used for another problem can be found in Forbes
[13].

The initial guess for the unknownsy′
i

is zero whenε � 1 or previous computed solutions obtained for slightly different
values ofF andε whenε is large.

2.3. Results

The numerical accuracy of the scheme described in the previous section for solving (12)–(15) was checked by varyingN

ande (see Fig. 1). We found that the solutions presented here are independent ofN ande within graphical accuracy forN � 200
ande � 0.1. In the numerical calculations, the integral from−∞ to ∞ in (12) is replaced by an integral froms1 to sN . We
found that these upstream and downstream truncations only affects the first and last half wavelength of the free surface profiles.
A similar numerical behavior was found in Asavanant and Vanden-Broeck [11].

We compared our numerical solutions with those obtained by using the method of Asavanant and Vanden-Broeck [11] (i.e.,
by solving (8) and (9)). A typical comparison is shown in Fig. 1. Similar results were found for other values ofε andF .
The conclusion of the comparison is that numerical results as accurate as those of Asavanant and Vanden-Broeck [11] can be
obtained without using complex variables. This suggests that accurate results for three-dimensional free surface flows can be
obtained by generalising the Green formulation of Section 2 to three dimensions. This is done in Section 4.

3. Two-dimensional surface piercing object

Once a solution of (12)–(15) or of (8), (9) has been computed for a given pressure distribution (16), we can replace the free
surface under the support−1< s < 1 of the pressure distribution by a rigid surface. Therefore the schemes described in the
previous sections provide an inverse method to calculate free surface flows past surface piercing objects or two-dimensional
“ships.” The shape of the ship is given at the end of the calculations by the shape of the streamline under the support of the
pressure distribution. One drawback of this approach is that the shape of the ship depends onF . It is therefore desirable to have
approaches which enable a direct calculation of the free surface flow past a given surface piercing object. This was achieved by
Asavanant and Vanden-Broeck [11] using complex variables. In this section we explore the corresponding approach using the
Green function formulation.

3.1. Formulation and numerical procedure

We shall present results for a parabolic object defined by the equation

y = ε

2

(
x2 − 1

)
. (20)

In general we might expect a spray or splash at the front of the object (see, for example, Dias and Vanden-Broeck [15]). Here, we
restrict our attention to flows which separate smoothly from the object. The calculation of flows past bodies in finite or infinite
depth has received much interest in recent years. Madurasinghe and Tuck [19], Tuck and Vanden-Broeck [20] and Farrow
and Tuck [17] have computed flows past bodies of arbitrary shape which have either a smooth separation from the body, or a
stagnation point on the body in water of infinite depth. Hocking [16] has computed bow flows with smooth separation in water
of finite depth. McCue and Forbes [18] have presented computations of bow and stern flows with constant vorticity in finite
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Fig. 1. (Top) Computed free surface profiles obtained with the same parametersF = 0.7, ε = 0.001 but with different grids:N = 721,
e = 0.025 (-) andN = 361, e = 0.05 (–). (Bottom) Computed free surface profiles obtained with this algorithm (-) and with an algorithm
based on complex potential formulation (:). The parameters areF = 0.7, ε= 0.001 and the grid used:N = 721,e= 0.025.

depth. In all these papers flows past a two-dimensional semi-infinite body having only one point of separation are computed,
whereas in our paper and in Asavanant and Vanden-Broeck [11] flows past finite bodies which have two points of separation
(one in front and one at the rear of the body) are considered.



648 E. Părău, J.-M. Vanden-Broeck / European Journal of Mechanics B/Fluids 21 (2002) 643–656

Let us denote bysa andsb the values ofs at the left and right separation points. Since we need to findsa andsb as part of
the solution, we introduce the new variablet by

s = sa + (sb − sa)t. (21)

The relation (21) maps the unknown interval(sa, sb) into the fixed interval(0,1). The new unknown functions are
φ̃(t) := φ(s), X̃(t)=X(s), Ỹ (t)= Y(s), wheres is defined by (21).

The system of nonlinear equations to be solved is now obtained by substituting (21) into (12), (13), (15). This yields the
integro-differential equation

2π
(
φ̃(t∗)− X̃(t∗)) =

∞∫
−∞

[
2
(
φ̃(t)− X̃(t)) (X̃(t)− X̃(t∗))(−Ỹ ′(t))+ (Ỹ (t)− Ỹ (t∗))X̃′(t)

(X̃(t)− X̃(t∗))2 + (Ỹ (t)− Ỹ (t∗))2

− ln
[(
X̃(t)− X̃(t∗))2 + (

Ỹ (t)− Ỹ (t∗))2]
Ỹ ′(t)

]
dt, −∞< t∗ <∞, (22)

the Bernoulli equation,

1

2

(
φ̃t

sb − sa
)2

+ Ỹ

F2
= 1

2
, for t < 0 or t > 1 (23)

and the arclength equation

X̃′2 + Ỹ ′2 = (sb − sa)2. (24)

In addition the kinematic condition boundary condition on the object gives

Ỹ = ε

2

(
X̃2 − 1

)
, for 0< t < 1. (25)

At the separations pointst = 0 andt = 1 we must satisfy both (23) and (25), so we have

1

2

(
φ̃t

sb − sa
)2

+ ε(X̃2 − 1)

2F2
= 1

2
, for t = 0 or t = 1. (26)

For the numerical computation we introduce againN equally-spaced pointst1 = −e(N − 1)/2, ti = t1 + e(i − 1),
i = 2, . . . ,N and use the notationxi = X̃(ti ), yi = Ỹ (ti ), φi = φ̃(ti ),x′

i = X̃′(ti ), y′
i = Ỹ ′(ti ) andφ′

i = φ̃t (ti ).
The values ofφ̃t at the surface of the object cannot be determined as in (18), by using Bernoulli equation. At the surface

of the object, betweent = 0 andt = 1 there areM = 1/e − 1 mesh points ( we choosee such that 1/e is integer, but this is
not a necessary condition). At each of them then are two unknownsφ′

i
andy′

i
. So we haveN +M + 2 unknowns:y′

1, . . . , y
′
N

,
φ′
(N+1)/2+1, . . . , φ

′
(N+1)/2+M andsa, sb .

The integral equation is evaluated at midpointsti−1/2, i = 2, . . . ,N − 1 as before, so we obtainN − 2 equations. Another
M equations are given by

y(N+1)/2+j = ε

2

(
x2
(N+1)/2+j − 1

)
, j = 1, . . . ,M. (27)

The equations at the separation points (26) gives us another two equations and the radiation condition (19) gives us the last
two equations. It should be noted that the values ofφ̃′ at the separation points (φ′

(N+1)/2 andφ′
(N+1)/2+M+1) are obtained

using an extrapolation formula with 4 points (taken from the object).
The usual initial guess isy′

i
= 0, i = 1, . . . ,N , sa = −1, sb = 1, φ′

(N+1)/2+j = sb − sa , j = 1, . . . ,M .
At the first point we impose

y1 = 0, x′
1 = φ′

1 = sb − sa, x1 = φ1 = sa + (sb − sa)t1, (28)

and the remaining functions are calculated as before, using Eqs. (23)–(24) and the trapezoidal rule. The values of functions at
midpoints are calculated again by interpolation with two points.

The numerical scheme described above was used to calculate solutions for various values ofF andε. The accuracy of the
results was checked by varyingN ande. We present typical free surfaces forε > 0 and forε < 0 in Fig. 2. It can be observed
that if we keepF constant and we vary the value ofε, the wavelength of the waves downstream does not change much, only
the amplitude is affected.

Our calculations cannot be directly compared with those of Asavanant and Vanden-Broeck [11] because their study is for
finite depth. Also they choose the position of the separation points and obtain the position of the vertex of the obstacle as part of
the solution. In our case the position of the vertex of the object is known and we calculate the position of the separation points
as part of the solution.
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Fig. 2. (Top) Computed free surface profiles obtained withF = 1.5, ε = 0.004,N = 421, e = 0.1. The parabolic object(:) and separation
points (×) are also showed. (Bottom) Computed free surface profiles obtained in the caseε < 0. The values of the parameters areF = 1.5,
ε = −0.006(:); ε = −0.004(−−); ε = −0.001(−).

4. Three-dimensional free surface flows

The results of the previous section shows that two-dimensional free surface flows can be computed accurately by using the
Green formulation. In this section we extend the approach for three-dimensional flows. We present explicit results for pressure
distributions and submerged objects.
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4.1. Formulation

We consider a three-dimensional distribution of pressure moving to the left at a constant velocityU at the surface of a fluid
of infinite depth. The sketch of the flow is given in Fig. 3. As in Section 2, we choose a frame of reference moving with the
pressure distribution and assume that the flow is steady. At infinite depth there is then a uniform stream with constant velocity
U to the right. We introduce Cartesian coordinatesx, y, z with thez-axis directed vertically upwards and thex-axis parallel to
the velocityU . We denote byz = ζ(x, y) the equation of the free surface. The potential functionΦ(x,y, z) satisfies Laplace
equation

∇2Φ = 0, x, y ∈ R, z < ζ(x, y), (29)

in the flow domain.
The kinematic boundary condition (3), the dynamic boundary condition (4) and the radiation condition (5) can now be

rewritten as

Φxζx +Φyζy =Φz, z= ζ(x, y), (30)

1

2

(
Φ2
x +Φ2

y +Φ2
z

) + gζ + p

ρ
= U2

2
, z= ζ(x, y), (31)

no waves asx→ −∞. (32)

Eq. (10) holds in three dimensions whereV represents a volume bounded with the surfaceC. Proceeding as in Section 2
and using the three-dimensional free surface Green function

G= 1

4π

1

((x − x∗)2 + (y − y∗)2 + (z− z∗)2)1/2 (33)

we obtain

1

2

(
φ(x∗, y∗)−Ux∗) =

∫ ∫
R2

(
φ(x, y)−Ux) 1

4π

ζ(x, y)− ζ(x∗, y∗)− (x − x∗)ζx − (y − y∗)ζy
((x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2 dx dy

+
∫ ∫
R2

1

4π

Uζx

((x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)1/2 dx dy (34)

whereφ(x, y)=Φ(x,y, ζ(x, y)).
We choose the pressure as

p(x, y)=
 P0e

L2

(x2−L2)
+ L2

(y2−L2) , |x|<L and|y|<L,
0, otherwise.

Fig. 3. Sketch of the flow in the three-dimensional case. The pressure is moving to the left at a constant velocityU .
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We introduce dimensionless variables by usingU as the unit velocity andL as the unit length. Combining Eqs. (31) and (32)
and using the chain rule of calculus we obtain

1

2

(1+ ζ2
x )φ

2
y + (1+ ζ2

y )φ
2
x − 2ζxζyφxφy

1+ ζ2
x + ζ2

y

+ ζ

F2
+ εP = 1

2
(35)

whereF =U/(gL)1/2 andε = P0/(ρU
2). NowP(x,y) is e1/(x2−1)+1/(y2−1) for |x|< 1 and|y|< 1, and 0 otherwise.

Eq. (34) is now rewritten as

2π
(
φ(x∗, y∗)− x∗) = I1 + I2 (36)

where

I1 =
∞∫

0

∞∫
−∞

(
φ(x, y)− φ(x∗, y∗)− x + x∗)

K1 dx dy, (37)

I2 =
∞∫

0

∞∫
−∞

ζx(x, y)K2 dx dy, (38)

K1 =
[

ζ(x, y)− ζ(x∗, y∗)− (x − x∗)ζx − (y − y∗)ζy
((x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2

+ ζ(x, y)− ζ(x∗, y∗)− (x − x∗)ζx − (y + y∗)ζy
((x − x∗)2 + (y + y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2

]
,

K2 =
[

1√
(x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2

+ 1√
(x − x∗)2 + (y + y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2

]
. (39)

In deriving (36) we used the fact that the solutions are symmetric iny direction. We note that the integralI2 is singular
whereasI1 is not.

4.2. The numerical scheme

We truncate the intervals−∞< x <∞ and 0< y <∞ to x1 < x < xN , andy1 < y < yM and introduce the mesh points
xi = x1 + (i − 1)dx, i = 1, . . . ,N andyj = (j − 1)dy, j = 1, . . . ,M . Following Forbes [1] the integralI2 is written in the
form I2 = I ′2 + I ′′2 :

xN∫
x1

(
ζx(x, y)K2 − ζx(x∗, y∗)S2

)
dx dy, I ′′2 = ζx(x∗, y∗)

yM∫
y1

xN∫
x1

S2 dx dy

where

S2 = 1√
A(x − x∗)2 +B(x − x∗)(y − y∗)+C(y − y∗)2

+ 1√
A(x − x∗)2 −B(x − x∗)(y + y∗)+C(y + y∗)2

where

A= 1+ ζ2
x (x

∗, y∗), B = 2ζx(x
∗, y∗)ζy(x∗, y∗), C = 1+ ζ2

y (x
∗, y∗).

The integralI ′′2 (which contains the singularity) can be calculated using∫ ∫
ds dt√

As2 +Bst +Ct2
= t√

A
ln

(
2As +Bt + 2

√
A

(
As2 +Bst +Ct2) )

+ s√
C

ln
(
2Ct +Bs + 2

√
C

(
As2 +Bst +Ct2) )

.

The 2NM unknowns are

u = (ζx11, ζx12, . . . , ζxN,M−1, ζxNM ,φx11, . . . , φxNM )
T.



652 E. Părău, J.-M. Vanden-Broeck / European Journal of Mechanics B/Fluids 21 (2002) 643–656

The integrals and the Bernoulli equation are evaluated at the points(xi+1/2, yj ), i = 1, . . . ,N − 1, j = 1, . . . ,M , so we
have 2(N − 1)M equations. Another 2M equations are obtained from the radiation conditionζx1j = 0, φx1j = 1, j = 1, . . . ,M .
The values ofζ andφ are obtained by integratingζx andφx with respect tox by the trapezoidal rule. The integration is started
by using the values derived from the radiation condition (32) and the free surface condition (35) satisfied at the first row

ζ1j = 0, ζy1j = 0, φ1j = x1, φy1j = 0, j = 1, . . . ,M.

The values ofζy andφy are then calculated by central differences. The values of the variablesζ andφ at (xi+1/2, yj ) were
obtained by interpolation.

The 2nm nonlinear equations are solved by Newton’s method. In most calculations we chooseζxij = 0, φxij = 1 for
i = 1, . . . ,N , j = 1, . . . ,M as the initial guess.

4.3. Results

We used the scheme of the Section 4.2 to calculate solutions for different values of the Froude numberF and of the
parameterε. We found that the results are qualitatively similar. We present a typical free surface profile forF = 0.7 andε = 1
(see Fig. 4). The wake and the two different family of waves (transverse waves and short-length divergent waves) can be easily
observed. WhenF increases the amplitude of the divergent waves becomes more important than that of the transverse waves
(see Fig. 5). The wavelength of the transverse waves increases with the Froude number (see Fig. 6). Nonlinear solutions can be
calculated close to the maximum height of waves allowed by Bernoulli equation.

The influence of the truncation upstream and downstream is seen to be negligible (see Fig. 7). Here we show the centerline
(i.e., the intersection of the free surface with the planey = 0). Two curves corresponding to different truncationsx = (−3,12)
andx = (−6,6) are shown.

The accuracy of the solutions have been tested by varying the number of grid points and the intervals dx and dy between
grid points (see an example in Fig. 8). The upper part of the figure,y > 0 is calculated withN = 61,M = 17, dx = dy = 0.3

Fig. 4. The solution for the wave field due to a moving pressure advancing atF = 0.7 andε = 1. The grid used:N = 75,M = 25, dx = 0.2,
dy = 0.2. The transverse waves are perpendicular to the direction of the velocityU (i.e., thex-axis). The divergent waves have crests roughly
parallel to the direction of velocity, moving outward. In this graph and in the following three-dimensional figures the darker parts correspond
to the troughs and the brighter parts to the peaks of the waves.
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Fig. 5. The waves generated for a higher Froude number (F = 1.2). The grid used:N = 61,M = 19, dx = dy = 0.6. The divergent waves can
be observed more easily and their amplitudes are more important than those of the transverse waves.

Fig. 6. The wake in the casesF = 0.7 (lower half) andF = 0.5 (upper half). In both casesε = 1.
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Fig. 7. The free surface elevation at the planey = 0 for two different truncations. Two curves corresponding to different truncationsx = (−3,12)
(the dashed line) andx = (−6,6) (the solid line) are shown. In both casesF = 0.7, ε = 1.

Fig. 8. The accuracy check.F = 0.7, ε = 1 × 10−4, N = 89,M = 13, dx = dy = 0.2 (lower half),N = 61,M = 17, dx = dy = 0.3 (upper
half).

and the lower party < 0 is calculated withN = 89,M = 13, dx = dy = 0.2. The values of the parameters are the same in both
cases (F = 0.7, ε= 1).

The algorithm can be easily modified to include two or more pressure distributions and to study the interaction of the wakes
produced by each of them. We present an example in Fig. 9 for two pressure disturbances moving parallely. The V-shape of the
waves downstream becomes in that case a W-shape. This case can be viewed as the wave interactions between ships moving
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Fig. 9. The case of two moving pressures (F = 0.4).

Fig. 10. The waves generated by a pair source-sink (F = 0.7). The source is in(0,0,−1) and the sink in(1,0,−1).

parallely in deep water. A numerical study of wave interaction of two moving pressure disturbances in shallow water was done
in Jiankang et al. [21], using a wave equation model.
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There are various possible generalisations of our code. One of them is to calculate solutions in finite depth. In that caseG

should be replaced by

G= 1

4π

1

((x − x∗)2 + (y − y∗)2 + (z− z∗)2)1/2 + 1

4π

1

((x − x∗)2 + (y − y∗)2 + (z+ z∗ + 2h)2)1/2

whereh is the depth of the fluid.
Another is to consider submerged objects. An inverse method to compute them is by superposing singularities. An example

of the waves generated by a source and a sink is given in Fig. 10.

5. Conclusion

We have calculated two-dimensional and three-dimensional free surface flows generated by moving pressures. This models
in an inverse way free surface flows past ships. For two dimensions we have presented a direct method using a parabolic
object. The corresponding problem in three dimensions is left for future work. Generalisation for two pressure distributions and
submerged disturbances were also presented.
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